Hierarchical Learning in Stochastic Domains: Preliminary Results

نویسنده

  • Leslie Pack Kaelbling
چکیده

This paper presents the HDG learning algorithm, which uses a hierarchical decomposition of the state space to make learning to achieve goals more efficient with a small penalty in path quality. Special care must be taken when performing hierarchical planning and learning in stochastic domains, because macro-operators cannot be executed ballistically. The HDG algorithm, which is a descendent of Watkins’ Q-learning algorithm, is described here and preliminary empirical results are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coupled Hierarchical IR and Stochastic Models for Surface Information Extraction

We present in this paper a combination of Machine Learning based Information Retrieval (IR) techniques and stochastic language modelling in a hierarchical system that extracts surface information from text. At the lowest level of this hierarchy, documents and paragraphs are successively routed with IR techniques. At the top level, a stochastic language model extracts the most relevant phrases, ...

متن کامل

Model-based Reinforcement Learning with Neural Networks on Hierarchical Dynamic System

This paper describes our strategy to approach reinforcement learning in robotic domains including the use of neural networks. We summarize our recent work on model-based reinforcement learning where models of hierarchical dynamic system are learned with stochastic neural networks [Yamaguchi and Atkeson, 2016b], and actions are planned with stochastic differential dynamic programming [Yamaguchi ...

متن کامل

A Hybrid Optimization Algorithm for Learning Deep Models

Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...

متن کامل

A Hybrid Optimization Algorithm for Learning Deep Models

Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993